Abstract

Microtubules are cytoskeletal filaments critical for determining the complex morphology of neurons, as well as the basic architecture and organization of mitosis in all eukaryotic cells. Microtubules in humans are composed of 8 α- and 9 β-tubulin isotypes, each of which is encoded by different members of a multi-gene family. The expression pattern of tubulin isotypes, in addition to isotype-specific post-translational modifications, is thought to be critical for the morphogenesis of axons and dendrites. Recent studies revealed that several neurodevelopmental disorders are caused by mutations of specific tubulin isotypes, suggesting that each tubulin isotype has distinct functions. Therefore, in vitro and in vivo functional analyses of tubulin isotypes are important to understand the pathogenesis of developmental disorders. Likewise, analysis of developmental disorders may clarify the function of different tubulin isotypes. In this respect, both the preparation of specific tubulin isotypes and of specific mutant tubulin proteins is critical to understanding the function of tubulin. In the last 20 years, various methods have been developed to study functional differences between tubulin isotypes and the functional defects caused by tubulin mutations. These technical achievements have been discussed in this review. The function of tubulin/microtubules in neuronal morphogenesis as revealed through these techniques has also been described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call