Abstract
Understanding brain mechanisms and its problem solving techniques is the motivation of many emerging brain inspired computation methods. In this paper, respecting deep architecture of the brain and spiking model of biological neural networks, we propose a spiking deep belief network to evaluate ability of the deep spiking neural networks in face recognition application on ORL dataset. To overcome the change of using spiking neural networks in a deep learning algorithm, Siegert model is utilized as an abstract neuron model. Although there are state of the art classic machine learning algorithms for face detection, this work is mainly focused on demonstrating capabilities of brain inspired models in this era, which can be serious candidate for future hardware oriented deep learning implementations. Accordingly, the proposed model, because of using leaky integrate-and-fire neuron model, is compatible to be used in efficient neuromorphic platforms for accelerators and hardware implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.