Abstract
Abstract. Earth observation (EO) data – including satellite-borne, airborne or drone-based imagery – have become indispensable for the monitoring of the environment. EO supports tackling the ‘grand challenges’ at global spatial scales, such as global change and climate variability technology but also retail or insurance. Like a macroscope, it opens research avenues to observe processes occurring over a wide range of spatial and temporal scales, from abrupt changes such as earthquakes, to decadal shifts such as growth and shrinkage of ice sheets. Particularly satellite data became a success story and empowered individuals, businesses and society. Until a few years ago, the term remote sensing mainly stood for a digital raster world view while the GIS community was inclined to the vector world. “Earth Observation” seems to be integrative and to accommodate various means of data acquisition from satellites, aircrafts, drones, to in situ measurements. Today the rapid growth of data science, the consumerization of GIS and remote sensing, and the continued spread of online cartographic tools are prompting a more holistic Earth Observation Science and interdisciplinary educational programmes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.