Abstract

ABSTRACT While proximity-to-failure is considered an important resistance training (RT) prescription variable, its influence on physiological adaptations and short-term responses to RT is uncertain. Given the ambiguity in the literature, a scoping review was undertaken to summarise evidence for the influence of proximity-to-failure on muscle hypertrophy, neuromuscular fatigue, muscle damage and perceived discomfort. Literature searching was performed according to PRISMA-ScR guidelines and identified three themes of studies comparing either: i) RT performed to momentary muscular failure versus non-failure, ii) RT performed to set failure (defined as anything other than momentary muscular failure) versus non-failure, and iii) RT performed to different velocity loss thresholds. The findings highlight that no consensus definition for “failure” exists in the literature, and the proximity-to-failure achieved in “non-failure” conditions is often ambiguous and variable across studies. This poses challenges when deriving practical recommendations for manipulating proximity-to-failure in RT to achieve desired outcomes. Based on the limited available evidence, RT to set failure is likely not superior to non-failure RT for inducing muscle hypertrophy, but may exacerbate neuromuscular fatigue, muscle damage, and post-set perceived discomfort versus non-failure RT. Together, these factors may impair post-exercise recovery and subsequent performance, and may also negatively influence long-term adherence to RT. KEY POINTS This scoping review identified three broad themes of studies investigating proximity-to-failure in RT, based on the specific definition of set failure used (and therefore the research question being examined), to improve the validity of study comparisons and interpretations. There is no consensus definition for set failure in RT, and the proximity-to-failure achieved during non-failure RT is often unclear and varies both within and between studies, which together poses challenges when interpreting study findings and deriving practical recommendations regarding the influence of RT proximity-to-failure on muscle hypertrophy and other short-term responses. Based on the limited available evidence, performing RT to set failure is likely not superior to non-failure RT to maximise muscle hypertrophy, but the optimal proximity to failure in RT for muscle hypertrophy is unclear and may be moderated by other RT variables (e.g., load, volume-load). Also, RT performed to set failure likely induces greater neuromuscular fatigue, muscle damage, and perceived discomfort than non-failure RT, which may negatively influence RT performance, post-RT recovery, and long-term adherence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call