Abstract

As an essential property of frozen soils, change of unfrozen water content (UWC) with temperature, namely soil-freezing characteristic curve (SFCC), plays significant roles in numerous physical, hydraulic and mechanical processes in cold regions, including the heat and water transfer within soils and at the land–atmosphere interface, frost heave and thaw settlement, as well as the simulation of coupled thermo-hydro-mechanical interactions. Although various models have been proposed to estimate SFCC, their applicability remains limited due to their derivation from specific soil types, soil treatments, and test devices. Accordingly, this study proposes a novel data-driven model to predict the SFCC using an extreme Gradient Boosting (XGBoost) model. A systematic database for SFCC of frozen soils compiled from extensive experimental investigations via various testing methods was utilized to train the XGBoost model. The predicted soil freezing characteristic curves (SFCC, UWC as a function of temperature) from the well-trained XGBoost model were compared with original experimental data and three conventional models. The results demonstrate the superior performance of the proposed XGBoost model over the traditional models in predicting SFCC. This study provides valuable insights for future investigations regarding the SFCC of frozen soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.