Abstract

The Cosmological Constant Problem is re-examined from an effective field theory perspective. While the connection between gravity and particle physics has not been experimentally probed in the quantum regime, it is severely constrained by the successes of Standard Model quantum field theory at short distances, and classical General Relativity at large distances. At first sight, it appears that combining particle physics and gravity inevitably leads to an effective field theory below the weak scale which suffers from large radiative corrections to the cosmological constant. Consequently, this parameter must be very finely tuned to lie within the experimental bounds. An analog of just this type of predicament, and its resolution, are described in some detail using only familiar quantum field theory. The loop-hole abstracted from the analogy is the possibility of graviton ``compositeness'' at a scale less than $10^{-2}$ eV, which cuts off the large contributions to the cosmological constant from standard model physics. Experimentally, this would show up as a dramatic breakdown of Newton's Law in upcoming sub-centimeter tests of gravity. Currently, strings are the only known example of such compositeness. It is proposed that the gravitational sector comprises strings of very low tension, which couple to a stringy ``halo'' surrounding each point-like standard model particle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.