Abstract
A set of six axioms for sets of relations is introduced. All well-known sets of specific orderings, such as linear and weak orderings, satisfy these axioms. These axioms impose criteria of closedness with respect to several operations, such as concatenation, substitution and restriction. For operational reasons and in order to link our results with the literature, it is shown that specific generalizations of the transitivity condition give rise to sets of relations which satisfy these axioms. Next we study minimal extensions of a given set of relations which satisfy the axioms. By this study we come to the fundamentals of orderings: They appear to be special arrangements of several types of disorder. Finally we notice that in this framework many new sets of relations have to be regarded as a set of orderings and that it is not evident how to minimize the number of these new sets of orderings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.