Abstract
The software maintenance process is costly, accounting for up to 70% of the total cost in the software development life cycle (SDLC). The difficulty of maintaining software increases with its size and complexity, requiring significant time and effort. One way to alleviate these costs is to automate parts of the maintenance process. This research focuses on the automation of the classification phase using decision trees (DT) to sort, rank, and accept/reject maintenance requests (MRs) for mobile applications. Our dataset consisted of 1,656 MRs. We found that DTs could automate sorting and accepting/rejecting MRs with accuracies of 71.08% and 64.15%, respectively, though ranking accuracy was lower at 50%. While DTs can reduce costs, effort, and time, human verification is still necessary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.