Abstract

Nerve cuff electrodes have been used for decades as peripheral nerve interfacing devices in the fields of neural science, neural disease, and brain-machine interfacing. The currently-used cuff electrode is commonly based on rigid materials whose flexibility and tensile properties are far different from those of biological nervous tissue. Herein, a fluidic cuff electrode using a gallium-based liquid metal (LM) conductor is developed as a prototype artificial peripheral nerve. The results indicate that the LM cuff electrode has high flexibility and maintains outstanding conductivity. After implanted and connected to the sciatic nerve, the LM electrodes within the freely moving rats' bodies survive repeated body stretching and retain their long-term effectiveness in transmitting sciatic nerve signals with a high signal-to-noise ratio during two-week experiments. The LM electrodes are also proven capable of transmitting neural stimuli to the peripheral nerve on a long-term basis by triggering clear event-related potentials (ERPs) in terms of both the cortical potential and sciatic signal. These tests demonstrate that the LM electrodes meet the requirements of peripheral nerve signal recording and stimulation for long-term implantation, and have the potential to become a new generation of artificial peripheral nerve devices to interface with, supplement, or even enhance and replace the real peripheral nerve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call