Abstract

In order to model the individual electron transfer steps from the manganese cluster to the photooxidized sensitizer P 680 + in Photosystem II (PS II) in green plants, the supramolecular complex 4 has been synthesized. In this complex, a ruthenium(II) tris-bipyridine type photosensitizer has been linked to a manganese(II) dimer via a substituted l-tyrosine, which bridges the manganese ions. The trinuclear complex 4 was characterized by electron paramagnetic resonance (EPR) and electrospray ionization mass spectrometry (ESI-MS). The excited state lifetime of the the ruthenium tris-bipyridine moiety in 4 was found to be about 110 ns in acetonitrile. Using flash photolysis in the presence of an electron acceptor (methylviologen), it was demonstrated that in the supramolecular complex 4 an electron was transferred from the excited state of the ruthenium tris-bipyridine moiety to methylviologen, forming a methylviologen radical and a ruthenium(III) tris-bipyridine moiety. Next, the Ru(III) species retrieved the electron from the manganese(II/II) dimer in an intramolecular electron transfer reaction with a rate constant k ET>1.0×10 7 s −1, generating a manganese(II/III) oxidation state and regenerating the ruthenium(II) photosensitizer. This is the first example of intramolecular electron transfer in a supramolecular complex, in which a manganese dimer is covalently linked to a photosensitizer via a tyrosine unit, in a process which mimics the electron transfer on the donor side of PS II.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call