Abstract

Considerable progress has been made in understanding implant wear and developing numerical models to predict wear for new orthopaedic devices. However any model of wear could be improved through a more accurate representation of the biomaterial mechanics, including time-varying dynamic and inelastic behaviour such as viscosity and plastic deformation. In particular, most computational models of wear of UHMWPE implement a time-invariant version of Archard's law that links the volume of worn material to the contact pressure between the metal implant and the polymeric tibial insert. During in-vivo conditions, however, the contact area is a time-varying quantity and is therefore dependent upon the dynamic deformation response of the material. From this observation one can conclude that creep deformations of UHMWPE may be very important to consider when conducting computational wear analyses, in stark contrast to what can be found in the literature. In this study, different numerical modelling techniques are compared with experimental creep testing on a unicondylar knee replacement system in a physiologically representative context. Linear elastic, plastic and time-varying visco-dynamic models are benchmarked using literature data to predict contact deformations, pressures and areas. The aim of this study is to elucidate the contributions of viscoelastic and plastic effects on these surface quantities.It is concluded that creep deformations have a significant effect on the contact pressure measured (experiment) and calculated (computational models) at the surface of the UHMWPE unicondylar insert. The use of a purely elastoplastic constitutive model for UHMWPE lead to compressive deformations of the insert which are much smaller than those predicted by a creep-capturing viscoelastic model (and those measured experimentally). This shows again the importance of including creep behaviour into a constitutive model in order to predict the right level of surface deformation on a tibial insert. At high compressive loads, inelastic deformation mechanisms (creep and plasticity) dominate the mechanical response of UHMWPE components by altering the surface geometry (penetration depth and so contact area) and therefore the contact pressure. Although generic creep models can provide a good first approximation of material characteristics, for best accuracy both viscous and plastic effects must be captured, and model parameters must be founded upon specific experimental test data. Such high-fidelity numerical creep models will provide a better foundation for the next generation of more robust and accurate in-silico wear prediction tools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call