Abstract

Nanoelectronic devices are considered to be the computational fabrics for the emerging nanocomputing systems due to their ultra-high speed and integration density. However, the imperfect bottom-up self-assembly fabrication leads to excessive defects that have become a barrier for achieving reliable computing. In addition, transient errors continue to be a problem. The massive parallelism rendered by nanoscale integration opens up new opportunities but also poses challenges on how to manage such massive resources for reliable and high-performance computing. In this paper, we propose a nanoarchitecture solution to address these emerging challenges. By using dynamic redundancy allocation, the massive parallelism is exploited to jointly achieve fault (defect/error) tolerance and high performance. Simulation results demonstrate the effectiveness of the proposed technique under a range of fault rates and operating conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call