Abstract

The simulation of cardiac electrophysiological waves are known to require extremely fine meshes, limiting the applicability of current numerical models to simplified geometries and ionic models. In this work, an accurate numerical method based on a time-dependent anisotropic remeshing strategy is presented for simulating three-dimensional cardiac electrophysiological waves. The proposed numerical method greatly reduces the number of elements and enhances the accuracy of the prediction of the electrical wave fronts. Illustrations of the performance and the accuracy of the proposed method are presented using a realistic heart geometry. Qualitative and quantitative results show that the proposed methodology is far superior to the uniform mesh methods commonly used in cardiac electrophysiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.