Abstract

In this paper, we generalize our prior results in motion analysis to design gaits for a more general family of underactuated mechanical systems. In particular, we analyze and generate gaits for mixed mechanical systems which are systems whose motion is simultaneously governed by both a set of non-holonomic velocity constraints and a notion of a generalized momentum being instantaneously conserved along allowable directions of motion. Through proper recourse to geometric mechanics, we are able to show that the resulting motion from a gait has two portions: a geometric and a dynamic contribution. The main challenge in motion planning for a mixed system is understanding how to separate the geometric and dynamic contributions of motion due to a general gait, thus simplifying gait analysis. In this paper, we take the first step towards addressing this challenge in a generalized framework. Finally, we verify the generality of our approach by applying our techniques to novel mechanical systems which we introduce in this paper as well as by verifying that seemingly different prior motion planning results could actually be explained using the gait analysis presented in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.