Abstract

BackgroundThe Manning Cost–Benefit Tool (MCBT) was developed to assist criminal justice policymakers, policing organisations and crime prevention practitioners to assess the benefits of different interventions for reducing crime and to select those strategies that represent the greatest economic return on investment.DiscussionA challenge with the MCBT and other cost–benefit tools is that users need to input, manually, a considerable amount of point-in-time data, a process that is time consuming, relies on subjective expert opinion, and introduces the potential for data-input error. In this paper, we present and discuss a conceptual model for a ‘smart’ MCBT that utilises machine learning techniques.SummaryWe argue that the Smart MCBT outlined in this paper will overcome the shortcomings of existing cost–benefit tools. It does this by reintegrating individual cost–benefit analysis (CBA) projects using a database system that securely stores and de-identifies project data, and redeploys it using a range of machine learning and data science techniques. In addition, the question of what works is respecified by the Smart MCBT tool as a data science pipeline, which serves to enhance CBA and reconfigure the policy making process in the paradigm of open data and data analytics.

Highlights

  • The Manning Cost–Benefit Tool (MCBT) was developed to assist criminal justice policymakers, policing organisations and crime prevention practitioners to assess the benefits of different interventions for reducing crime and to select those strategies that represent the greatest economic return on investment

  • The Smart MCBT proposed in this paper aims to reddress the shortcomings of existing tools, by reintegrating individual cost–benefit analysis (CBA) projects using a database system that securely stores and de-identifies project data, and redeploys it using a range of machine learning (ML) and data science techniques

  • There are considerable opportunities and challenges for CBA using advanced data analytics, and the Smart MCBT proposed in this paper represents a step forward

Read more

Summary

Introduction

The Manning Cost–Benefit Tool (MCBT) was developed to assist criminal justice policymakers, policing organisations and crime prevention practitioners to assess the benefits of different interventions for reducing crime and to select those strategies that represent the greatest economic return on investment. Cost–benefit analysis tools, such as the Manning Cost–Benefit Tool (MCBT) (Manning et al 2016) and the Washington State Institute of Public Policy’s (WSIPP) Benefit–Cost Tool (Aos and Drake 2010), have been developed to assist criminal justice policymakers, policing organisations and crime prevention practitioners to assess the benefits of different interventions for reducing crime and to select those strategies that represent the greatest economic return on investment. Only the MCBT is capable of estimating such costs across environments, but the tool is limited to operating on expert opinion based on experience and subjective judgement

Objectives
Methods
Findings
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.