Abstract

<p>Subgrid-scale internal gravity waves (IGWs) are important distributors of energy in a stratified atmosphere. While they are mostly excited at lower altitudes their effects are most important between the upper troposphere to the mesopause (~85km). During propagation–both in the vertical and the horizontal–nonlinear IGWs can exert a wave drag on the mean winds, interact with the mean potential temperature, and mix atmospheric tracers such as aerosols or greenhouse gases.</p> <p>In state-of-the art weather prediction models IGWs are typically parametrized using the single-column and the steady-state assumptions. These parametrizations take into account dissipative effects of IGWs but neglect their horizontal propagation and all of their transient interaction mechanisms such as direct wave-mean-flow interactions. However, the latter have been shown to contribute to IGW dynamics in various idealized studies.</p> <p>Here we present advances of the use of the transient Multi Scale Gravity Wave Model (MS-GWaM) in the upper atmosphere model UA-ICON. Based on Lagrangian ray-tracing the parametrization includes various non-orographic wave sources, transient propagation in both the horizontal and vertical directions, direct wave-mean-flow interactions and wave breaking. The resulting setup satisfactorily reproduces the observed mean-wind and potential temperature climatology and already shows promising insights into the details of the role of IGWs in the atmosphere.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call