Abstract
Software growth (and more broadly, software evolution) is usually considered in terms of size or complexity of source code. However in different studies, usually different metrics are used, which make it difficult to compare approaches and results. In addition, not all metrics are equally easy to cal- culate for a given source code, which leads to the ques- tion of which one is the easiest to calculate without losing too much information. To address both issues, in this pa- per present a comprehensive study, based on the analysis of about 700,000 C source code files, calculating several size and complexity metrics for all of them. For this sample, we have found double Pareto statistical distributions for all metrics considered, and a high correlation between any two of them. This would imply that any model addressing soft- ware growth should produce this Pareto distributions, and that analysis based on any of the considered metrics should show a similar pattern, provided the sample of files consid- ered is large enough.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.