Abstract

The theoretical framework and a joint quasi-Newton-Levenberg-Marquardt-simulated annealing (qNLMSA) algorithm are established to treat an inverse X-ray diffraction tomography (XRDT) problem for recovering the 3D displacement field function fCtpd(r - r0) = h · u(r - r0) due to a Coulomb-type point defect (Ctpd) located at a point r0 within a crystal [h is the diffraction vector and u(r - r0) is the displacement vector]. The joint qNLMSA algorithm operates in a special sequence to optimize the XRDT target function {\cal F}\{ {\cal P} \} in a χ2 sense in order to recover the function fCtpd(r - r0) [{\cal P} is the parameter vector that characterizes the 3D function fCtpd(r - r0) in the algorithm search]. A theoretical framework based on the analytical solution of the Takagi-Taupin equations in the semi-kinematical approach is elaborated. In the case of true 2D imaging patterns (2D-IPs) with low counting statistics (noise-free), the joint qNLMSA algorithm enforces the target function {\cal F} \{ {\cal P} \} to tend towards the global minimum even if the vector {\cal P} in the search is initially chosen rather a long way from the true one.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call