Abstract
AbstractEmpirically based understanding of streamflow generation dynamics in a montane headwater catchment formed the basis for the development of simple, low‐parameterized, rainfall–runoff models. This study was based in the Girnock catchment in the Cairngorm Mountains of Scotland, where runoff generation is dominated by overland flow from peaty soils in valley bottom areas that are characterized by dynamic expansion and contraction of saturation zones. A stepwise procedure was used to select the level of model complexity that could be supported by field data. This facilitated the assessment of the way the dynamic process representation improved model performance. Model performance was evaluated using a multi‐criteria calibration procedure which applied a time series of hydrochemical tracers as an additional objective function. Flow simulations comparing a static against the dynamic saturation area model (SAM) substantially improved several evaluation criteria. Multi‐criteria evaluation using ensembles of performance measures provided a much more comprehensive assessment of the model performance than single efficiency statistics, which alone, could be misleading. Simulation of conservative source area tracers (Gran alkalinity) as part of the calibration procedure showed that a simple two‐storage model is the minimum complexity needed to capture the dominant processes governing catchment response. Additionally, calibration was improved by the integration of tracers into the flow model, which constrained model uncertainty and improved the hydrodynamics of simulations in a way that plausibly captured the contribution of different source areas to streamflow. This approach contributes to the quest for low‐parameter models that can achieve process‐based simulation of hydrological response. Copyright © 2009 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.