Abstract

CAV (connected and autonomous vehicle) is a crucial part of intelligent transportation systems. CAVs utilize both sensors and communication components to make driving decisions. A large number of companies, research organizations, and governments have researched extensively on the development of CAVs. The increasing number of autonomous and connected functions however means that CAVs are exposed to more cyber security vulnerabilities. Unlike computer cyber security attacks, cyber attacks to CAVs could lead to not only information leakage but also physical damage. According to the UK CAV Cyber Security Principles, preventing CAVs from cyber security attacks need to be considered at the beginning of CAV development. In this paper, a large set of potential cyber attacks are collected and investigated from the aspects of target assets, risks, and consequences. Severity of each type of attacks is then analysed based on clearly defined new set of criteria. The levels of severity for the attacks can be categorized as critical, important, moderate, and minor. Mitigation methods including prevention, reduction, transference, acceptance, and contingency are then suggested. It is found that remote control, fake vision on cameras, hidden objects to LiDAR and Radar, spoofing attack to GNSS, and fake identity in cloud authority are the most dangerous and of the highest vulnerabilities in CAV cyber security.

Highlights

  • Connected and autonomous vehicle (CAV), as a subset of the Intelligent Transportation System, makes use of different hardware, e.g., electronic control units (ECUs) and sensors, software, e.g., entertainment system and decision-making units, and data fused from multiple sources to conduct driving tasks with different levels of automation

  • E authors discussed the potential cyber attacks on V2I (Vehicle-to-Infrastructure) Communication and proposed a novel cyber security architecture called CVGuard to detect the attacks in V2I. e CVGuard reduced 60% DDoS (Distributed Denial of Service) attacks which might cause vehicle conflicts

  • It should be noticed that this paper aims to discuss the possible cyber security attacks to a full CAV (Level 5), where all the possible attacks could be conducted via wireless communication remotely

Read more

Summary

Introduction

Connected and autonomous vehicle (CAV), as a subset of the Intelligent Transportation System, makes use of different hardware, e.g., electronic control units (ECUs) and sensors, software, e.g., entertainment system and decision-making units, and data fused from multiple sources to conduct driving tasks with different levels of automation. With these components, CAVs could drive without human involvement and communicate with surroundings to navigate and take appropriate reactions. Mercedes Benz started to develop CAVs in 1980s; their latest S-class Benz vehicles completed 100 km road trials in Germany [7]

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call