Abstract

Road crashes cause a huge problem of public health in low- and middle-income countries (LMICs). The Safe System approach is generally considered as the leading concept on the way to road safety. Based on the fundamental premise that humans make mistakes, the overall traffic system should be ‘forgiving’. Sustainable safe road design is one of the key elements of the Safe System approach. Road design and speed control should help prevent crashes with a high level of kinetic energy. However, the road design principles behind the Safe System approach are certainly not leading in today’s infrastructure developments in most LMICs. Cities are getting larger with increasing motorization and expanding road networks. Existing through-roads in local communities are upgraded, resulting in heavy traffic loads and high speeds on places, that are absolutely not suited for this kind of traffic. Furthermore, a Safe System would require that functional design properties of vehicles and roads would be conceptually integrated, which is not the case at all. Although advanced driver assistance systems are on their way of development for quite a long period, their potential role in the Safe System concept is mostly unclear and at least strongly underexposed. The vision on future cars is dominated by the faraway concept of automation. This paper argues that the way to self-driving cars should take a route via the concept of guidance, i.e. vehicles that guide drivers, both on self-explaining roads and on more or less unsafe roads. Such an in-vehicle guidance system may help drivers to choose safe transport mode, a safe route and a safe speed, based on criteria related to safety and sustainability. It is suggested to develop driver assistance systems using relatively simple and cheap technologies, particularly for the purpose of use in LMICs. Such a guide may make roads self-explaining—not only by their physical design characteristics—but also by providing in-car guidance for drivers. In the future, the functional characteristics of both cars and roads may be conceptualized into one integrated Safe System, in which the user plays the central role. Such a guidance system may serve as the conceptual bridge between the roadway, the vehicle and the driver, and thus be considered as an indispensable component of the Safe System approach. It is argued that such a development is necessary to bring a breakthrough in road safety developments in LMICs and also give an acceleration towards zero fatalities in high-income countries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call