Abstract

BackgroundThe accurate prediction of biological features from genomic data is paramount for precision medicine and sustainable agriculture. For decades, neural network models have been widely popular in fields like computer vision, astrophysics and targeted marketing given their prediction accuracy and their robust performance under big data settings. Yet neural network models have not made a successful transition into the medical and biological world due to the ubiquitous characteristics of biological data such as modest sample sizes, sparsity, and extreme heterogeneity.ResultsHere, we investigate the robustness, generalization potential and prediction accuracy of widely used convolutional neural network and natural language processing models with a variety of heterogeneous genomic datasets. Mainly, recurrent neural network models outperform convolutional neural network models in terms of prediction accuracy, overfitting and transferability across the datasets under study.ConclusionsWhile the perspective of a robust out-of-the-box neural network model is out of reach, we identify certain model characteristics that translate well across datasets and could serve as a baseline model for translational researchers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.