Abstract
IntroductionThe pre-operative planning and intra-operative navigation of the endovascular aneurysm repair (EVAR) procedure are currently challenged by the aortic deformations that occur due to the insertion of a stiff guidewire. Hence, a fast and accurate predictive tool may help clinicians in the decision-making process and during surgical navigation, potentially reducing the radiations and contrast dose. To this aim, we generated a reduced order model (ROM) trained on parametric finite element simulations of the aortic wall-guidewire interaction. MethodA Design of Experiments (DOE) consisting of 300 scenarios was created spanning over seven parameters. Radial basis functions were used to achieve a morphological parametrization of the aortic geometry. The ROM was built using 200 scenarios for training and the remaining 100 for validation. ResultsThe developed ROM estimated the displacement of aortic nodes with a relative error below 5.5% for all the considered validation cases. From a preliminary analysis, the aortic elasticity, the stiffness of the guidewire and the tortuosity of the cannulated iliac artery proved to be the most influential parameters. ConclusionsOnce built, the ROM provided almost real-time and accurate estimations of the guidewire-induced aortic displacement field, thus potentially being a promising pre- and intra-operative tool for clinicians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.