Abstract
In the implementation of device-independent (DI) quantum key distribution (QKD) we are interested in maximizing the key rate, i.e. the number of key bits that can be obtained per signal, for a fixed security parameter. In the finite size regime, we furthermore also care about the minimum number of signals required before key can be obtained at all. Here, we perform a fully finite size analysis of device independent protocols using the CHSH inequality both for collective and coherent attacks. For coherent attacks, we sharpen the results recently derived in Arnon-Friedman et al (2018 Nat. Commun. 9 459), to reduce the minimum number of signals before key can be obtained. In the regime of collective attacks, where the devices are restricted to have no memory, we employ two different techniques that exploit this restriction to further reduce the number of signals. We then discuss experimental platforms in which DIQKD may be implemented. We analyse Bell violations and expected QBER achieved in previous Bell tests with distant setups and situate these parameters in the security analysis. Moreover, focusing on one of the experimental platforms, namely nitrogen-vacancy based systems, we describe experimental improvements that can lead to a DI QKD implementation in the near future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.