Abstract

Reliable predictions of the static and dynamic properties of a nucleus require a fully microscopic description of both ground and excited states of this complicated many-body quantum system. Predictive calculations are key to understanding such systems and are important ingredients for simulating stellar environments and for enabling a variety of contemporary nuclear applications. Challenges that theory has to address include accounting for nuclear deformation and the ability to describe medium-mass and heavy nuclei. Here, we perform a study of nuclear states in an Hartree-Fock-Bogoliubov (HFB) and Quasiparticle Random Phase Approximation (QRPA) framework that utilizes an axially-symmetric deformed basis. We present some useful techniques for testing the consistency of such calculations and for interpreting the results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call