Abstract

We illustrate a step towards the construction of a power counting in energy–density–functional (EDF) theories, by analyzing the equations of state (EOSs) of both symmetric and neutron matter. Within the adopted strategy, next–to–leading order (NLO) EOSs are introduced which contain renormalized first–order–type terms and an explicit second–order finite part. Employing as a guide the asymptotic behavior of the introduced renormalized parameters, we focus our analysis on two aspects: (i) With a minimum number of counterterms introduced at NLO, we show that each energy contribution entering in the EOS has a regular evolution with respect to the momentum cutoff (introduced in the adopted regularization procedure) and is found to converge to a cutoff–independent curve. The convergence features of each term are related to its Fermi–momentum dependence. (ii) We find that the asymptotic evolution of the second–order finite–part coefficients is a strong indication of a perturbative behavior, which in turns confirms that the adopted strategy is coherent with a possible underlying power counting in the chosen Skyrme–inspired EDF framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.