Abstract

Machine learning algorithms have become very frequently used in natural language processing, notably sentiment analysis, which helps determine the general feeling carried within a text. Among these algorithms, Support Vector Machines have proven powerful classifiers especially in such a task, when their performance is assessed through accuracy score and f1-score. However, they remain slow in terms of training, thus making exhaustive grid-search experimentations very time-consuming. In this paper, we present an observed pattern in SVM's accuracy, and f1-score approximated with a Lagrange polynomial.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.