Abstract

Multiagent learning literature has investigated iterated two-player games to develop mechanisms that allow agents to learn to converge on Nash Equilibrium strategy profiles. Such equilibrium configuration implies that there is no motivation for one player to change its strategy if the other does not. Often, in general sum games, a higher payoff can be obtained by both players if one chooses not to respond optimally to the other player. By developing mutual trust, agents can avoid iterated best responses that will lead to a lesser payoff Nash Equilibrium. In this paper we work with agents who select actions based on expected utility calculations that incorporates the observed frequencies of the actions of the opponent(s). We augment this stochastically-greedy agents with an interesting action revelation strategy that involves strategic revealing of one's action to avoid worst-case, pessimistic moves. We argue that in certain situations, such apparently risky revealing can indeed produce better payoff than a non-revealing approach. In particular, it is possible to obtain Pareto-optimal solutions that dominate Nash Equilibrium. We present results over a large number of randomly generated payoff matrices of varying sizes and compare the payoffs of strategically revealing learners to payoffs at Nash equilibrium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.