Abstract
During satellite remote sensing imaging, the use of Bayer mode sensors holds significant importance in saving airborne computing resources and reducing the burden of satellite transmission systems. The demosaicing techniques play a key role in this process. The integration of Generative Adversarial Networks (GANs) has garnered significant interest in the realm of image demosaicking, owing to their ability to generate intricate details. However, when demosaicing mosaic images in remote sensing techniques, GANs, although capable of generating rich details, often introduce unpleasant artifacts while generating content. To address this challenge and differentiate between undesirable artifacts and realistic details, we have devised a novel framework based on a Progressive Discrimination Strategy within a Generative Adversarial Network architecture for image demosaicking. Our approach incorporates an artifact-weighted Location Map refinement technique to guide the optimization process towards generating authentic details in a stable and precise manner. Furthermore, our framework integrates a global attention mechanism to boost the interaction of spatial-channel information across different dimensions, thereby enhancing the performance of the generator network. Moreover, we conduct a comparative analysis of various prevalent attention mechanisms in the context of remote sensing image demosaicking. The experimental findings unequivocally demonstrate that our proposed methodology not only achieves superior reconstruction accuracy on the dataset but also enhances the perceptual quality of the generated images. By effectively mitigating artifacts and emphasizing the generation of true details, our approach represents a significant advancement in the field of remote sensing image demosaicking, promising enhanced visual fidelity and realism in reconstructed images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.