Abstract

Food safety and quality are influenced by the presence (and possible proliferation) of pathogenic and spoilage microorganisms during the life cycle of the product (i.e., from the raw ingredients at the start of the production process until the moment of consumption). In order to simulate and predict microbial evolution in foods, mathematical models are developed in the field of predictive microbiology. In general, microbial growth is a self-limiting process, principally due to either (i) the exhaustion of one of the essential nutrients, and/or (ii) the accumulation of toxic products that inhibit growth. Nowadays, most mathematical models used in predictive microbiology do not explicitly incorporate this basic microbial knowledge. In this paper, a novel class of microbial growth models is proposed. In contrast with the currently used logistic type models, e.g., the model of Baranyi and Roberts [Baranyi, J., Roberts, T.A., 1994. A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology 23, 277–294], the novel model class explicitly incorporates nutrient exhaustion and/or metabolic waste product effects. As such, this novel model prototype constitutes an elementary building block to be extended in a natural way towards, e.g., microbial interactions in co-cultures (mediated by metabolic products) and microbial growth in structured foods (influenced by, e.g., local substrate concentrations). While under certain conditions the mathematical equivalence with classical logistic type models is clear and results in equal fitting capacities and parameter estimation quality (see Poschet et al. [Poschet, F., Vereecken, K.M., Geeraerd, A.H., Nicolaï, B.M., Van Impe, J.F., 2004. Analysis of a novel class of predictive microbial growth models and application to co-culture growth. International Journal of Food Microbiology, this issue] for a more elaborated analysis in this respect), the biological interpretability and extendability represent the main added value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.