Abstract

<p>Efficient tax debt collection is a challenge for Moroccan local tax authorities. This article explores the potential of machine learning techniques and novel strategies to enhance efficiency in this process. We present a practical use case demonstrating the application of machine learning for taxpayer segmentation, improving accuracy in identifying high-risk debtors. Using a comprehensive dataset of tax payment behavior, we showcase the effectiveness of machine learning algorithms in segmenting taxpayers based on their likelihood of non-compliance or debt accumulation. We also investigate innovative strategies that integrate behavioral economics principles to enable better targeted interventions. Real-world case studies in local tax debt collection highlight the impact of these strategies. The findings underscore the transformative potential of machine learning techniques and novel strategies in improving the efficiency of local tax debt collection. Accurate identification of high-risk debtors and tailored enforcement actions help maximize revenue while minimizing resource waste. This research contributes to the existing knowledge by providing insights into the implementation of machine learning techniques and novel strategies in tax debt collection. It emphasizes the importance of data-driven approaches and highlights how local tax authorities can drive efficiency and optimize revenue collection by embracing these advancements.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.