Abstract

BackgroundOptical detection of circulating haemozoin has been suggested as a needle free method to diagnose malaria using in vivo microscopy. Haemozoin is generated within infected red blood cells by the malaria parasite, serving as a highly specific, endogenous biomarker of malaria. However, phagocytosis of haemozoin by white blood cells which persist after the infection is resolved presents the potential for false positive diagnosis; therefore, the focus of this work is to identify a feature of the haemozoin signal to discriminate between infected red blood cells and haemozoin-containing white blood cells.MethodsConventional brightfield microscopy of thin film blood smears was used to analyse haemozoin absorbance signal in vitro. Cell type and parasite maturity were morphologically determined using colocalized DAPI staining. The ability of features to discriminate between infected red blood cells and haemozoin-containing white blood cells was evaluated using images of smears from subjects infected with two species of Plasmodium, Plasmodium yoelii and Plasmodium falciparum. Discriminating features identified by blood smear microscopy were characterized in vivo in P. yoelii-infected mice.ResultsTwo features of the haemozoin signal, haemozoin diameter and normalized intensity difference, were identified as potential parameters to differentiate infected red blood cells and haemozoin-containing white blood cells. Classification performance was evaluated using the area under the receiver operating characteristic curve, with area under the curve values of 0.89 for the diameter parameter and 0.85 for the intensity parameter when assessed in P. yoelii samples. Similar results were obtained from P. falciparum blood smears, showing an AUC of 0.93 or greater for both classification features. For in vivo investigations, the intensity-based metric was the best classifier, with an AUC of 0.91.ConclusionsThis work demonstrates that size and intensity features of haemozoin absorbance signal collected by in vivo microscopy are effective classification metrics to discriminate infected red blood cells from haemozoin-containing white blood cells. This reduces the potential for false positive results associated with optical imaging strategies for in vivo diagnosis of malaria based on the endogenous biomarker haemozoin.

Highlights

  • Optical detection of circulating haemozoin has been suggested as a needle free method to diagnose malaria using in vivo microscopy

  • Due to its unique optical properties, Hz serves as an endogenous biomarker that has been explored in several in vivo malaria diagnostic approaches [1,2,3]; Hz is found in white blood cells that have phagocytized either infected red blood cell (iRBC) or free Hz following iRBC rupture

  • To avoid misinterpreting Hz detected in pigment-containing white blood cell (pWBC) as iRBCs, it is critical that diagnostic methods relying on Hz detection differentiate these two cell types

Read more

Summary

Introduction

Optical detection of circulating haemozoin has been suggested as a needle free method to diagnose malaria using in vivo microscopy. Haemozoin is generated within infected red blood cells by the malaria parasite, serving as a highly specific, endogenous biomarker of malaria. Haemozoin (Hz), referred to as the malaria pigment, is generated within infected red blood cells (iRBCs) by the malaria parasite. Due to its unique optical properties, Hz serves as an endogenous biomarker that has been explored in several in vivo malaria diagnostic approaches [1,2,3]; Hz is found in white blood cells that have phagocytized either iRBCs or free Hz following iRBC rupture. PWBCs may persist days after iRBC clearance and resolution of the infection [6], thereby presenting the potential for false positive diagnosis. To avoid misinterpreting Hz detected in pWBCs as iRBCs, it is critical that diagnostic methods relying on Hz detection differentiate these two cell types

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call