Abstract

A novel methodology is formulated and investigated on test cases for the reconstruction of complete vertical aerosol extinction profiles in which a synergy of remote, in-situ, and airborne measurements is utilized. The GRASP Open aerosol retrieval algorithm is supplied with remote LIDAR and sunphotometer data to obtain aerosol extinction profiles within the LIDAR’s operation range for coarse and fine aerosol modes separately. These are supplemented with ground-based in-situ measurements of particle size distribution that are translated to coarse and fine aerosol extinction coefficients with the use of Mie theory. UAV-based observations with optical particle counters are included to add information on vertical aerosol variability in the near-surface region. The profiles are closed with an analytical interpolation that is fine-tuned to produce continuous and smooth extinction profiles throughout the whole troposphere that are in agreement with columnar aerosol optical depth measurements. We present the possibility of reconstructing a complete and calibrated aerosol extinction profile, based on the case studies at a Central European background station. We include data-denial experiments to show that the inclusion of UAV-based measurements improves such reconstructions by providing crucial information on aerosol profiles near the ground. The proposed methodology can prove to be a potent tool for studies of aerosol concentration and evolution, especially when the majority of the pollution resides near the surface. Such conditions are prevalent in many highly industrialized regions, including central and southern Poland.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call