Abstract

As a typical form of optical fringes with a quadratic phase, Newton's ring patterns play an important role in spherical measurements and optical interferometry. A variety of methods have been used to analyze Newton's ring patterns. However, it is still rather challenging to fulfill the analysis. We present a deep-learning-based method to estimate the parameters of Newton's ring patterns and fulfill the analysis accordingly. The experimental results indicate the excellent accuracy, noise robustness, and demodulation efficiency of our method. It provides another applicable approach to analyzing Newton's ring patterns and brings insights into fringe analysis and interferometry-based measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.