Abstract

Snow accumulation on surfaces exposed to adverse weather conditions has been studied over the years due to a variety of problems observed in different industry sectors, such as aeronautics and wind and civil engineering. With the growing interest in autonomous vehicles (AVs), this concern extends to advanced driver-assistance systems (ADAS). Weather stressors, such as snow and icing, negatively influence the sensor functionality of AVs, and their autonomy is not guaranteed by manufacturers during episodes of intense weather precipitation. As a basis for mitigating the negative effects caused by heavy snowfall, models need to be developed to predict snow accumulation over critical surfaces of AVs. The present work proposes a framework for the study of snow accumulation on road vehicles. Existing icing and snow accretion models are reviewed, and adaptations for automotive applications are discussed. Based on the new capabilities developed by the Weather on Wheels (WoW) program at Ontario Tech University, a model architecture is proposed in order to progress toward adequate snow accretion predictions for autonomous vehicle operating conditions, and preliminary results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.