Abstract

Nuclear Magnetic Resonance (NMR) relaxometry is a powerful technique that allows to investigate the properties of materials. More advanced NMR relaxometry techniques such as Fast Field-Cycling (FFC) require the magnetic field to reach any desired value in a very short time (few milliseconds) and field oscillations to stay within few ppms. Such specifications call for the introduction of a suitable Field Frequency Lock (FFL) system. FFL relies on an indirect measure of the magnetic field which can be obtained by performing a parallel NMR experiment with a known sample. In this paper we propose a PID controller to guarantee field fluctuations to stay below the desired level and short settling time. The tuning of the controller is based on a mathematical description of the entire process, which is validated by performing real experiments. Numerical simulations show promising results that we expect to be confirmed by real experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.