Abstract

Attaining metabolic and isotopic balanced growth is one critical condition for physiological studies using isotope-labeled tracers, but is very difficult to obtain in batch culture due to the extensive metabolite exchange with the surrounding medium and related physiological changes. In the present study, we investigated metabolic and isotopic behavior of CHO cells in differently designed media. We observed that the assumption of balanced cell growth cannot be justified in batch culture of CHO cells directly using conventional, commercially available media. By systematically redesigning media composition and characterizing metabolic steady state based on mass balances and measurement of labeling dynamics, we achieved balanced cell growth for the main cellular substrates in CHO cells. This was done in a step-by-step analysis of growth and primary metabolism of CHO cells with the use of [U-13C]glucose feeding and adjusting concentrations of amino acids in the growth medium. The optimized media obtained at the end of the study provide balanced growth and isotopic steady state or at least asymptotic steady state. As a result, we established a platform to conduct isotope-based physiological studies of mammalian systems more reliably and therefore well suited for later use in metabolic profiling of mammalian systems such as 13C-labeled metabolic flux analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call