Abstract

Many modern electronic devices utilize linear Hall sensors to measure current and the magnetic field, as well as to perform switching and latching operations. Smartphones, laptops, and e-readers all work with very low (sub-milliampere) currents. To perform a switching function in low-power devices, however, Hall sensors must work in the microampere regime. This paper demonstrates, for the first time, the ability of a standard Hall detector to work linearly in the microampere regime between 0 and 0.7 Tesla. To do so, we developed a current source with RMS noise on the order of 10–100 pA/Hz. An optimized electronic circuit with minimal connections feeds current to the Hall sensor, and the Hall voltage is measured with an industrial nanovoltmeter. After cooling this system down to temperatures as low as 77 K, we found mostly 1/f noise. In this regime the thermal noise was negligible. We demonstrate the capabilities of this system by precisely measuring the slope of the Hall effect with a four-point probe at current intensities of 100, 10, and 1 μA. We expect that our system can work as a microampere Hall sensor using external voltage detectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.