Abstract
Otoacoustic emissions (OAEs) provide salient information about cochlear function and dysfunction. Two broad classes of emissions, linear reflection and nonlinear distortion, arise via distinct cochlear processes and hence, appear to provide independent information about cochlear health and hearing. Considered in combination, these two OAE types may characterize sensory hearing loss most effectively. In this study, the level-dependent growth of stimulus-frequency OAEs (a reflection-type emission) and distortion-product OAEs (a distortion-type emission) were measured in ten normal-hearing ears and eight ears with slight-to-moderate sensorineural hearing loss. Metrics of OAE strength and compression were derived from OAE input/output functions and then considered in a combined fashion. Results indicate that SFOAEs and DPOAEs differ significantly in their strength and compression features. When SFOAE and DPOAE metrics are displayed together on a two-dimensional plot, relatively well-defined data clusters describe their normative relationship. In hearing-impaired ears, this relationship is disrupted but not in a uniform way across ears; ears with similar audiograms showed differently altered joint-OAE profiles. Hearing loss sometimes affected only one OAE or one more than the other. Results suggest a joint-OAE profile is promising and warrants study in a large group of subjects with sensory hearing loss of varied etiologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.