Abstract
Overeating and lack of exercise are major contributors to the current obesity epidemic, but environmental contaminants, or obesogens, are also considered to be potential actors. A common obesogen target is the Peroxisome Proliferator Activated Receptor Gamma (PPARγ). Screening for exogenous obesogens requires in vivo systems as many xenobiotics exert their effects through metabolites. We thus developed a humanized in vivo PPARγ reporter model, using Xenopus laevis larvae, a species possessing metabolic capacities comparable to mammals. A somatic transgenesis approach was used to co-express an expression vector for the human PPARγ protein simultaneously with one of a series of reporter vectors, each containing a PPARγ Response Element (PPRE)-eGFP sequence. Treatment of tadpoles with PPARγ agonists, antagonists or candidate obesogens, significantly modulated eGFP expression. Thus, the system provides a promising proof of principle for a sensitive and reliable humanized in vivo tool to screen both novel PPARγ drug ligands and potential endocrine disruptors or obesogens targeting this receptor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.