Abstract

ABSTRACT We extend our model of magnetic braking (MB), driven by an α–Ω dynamo mechanism, from fully convective M-dwarfs (FCMDs) to explain the surface and internal spin $P_\mathrm{spin}$ evolution of partly convective dwarfs (PCDs) starting from the disc-dispersal stage to the main-sequence turn-off. In our model, the spin of the core is governed by shear at the core-envelope boundary while the spin of the envelope is governed by MB and shear. We show that (1) the most massive FCMDs experience a stronger spin-down than PCDs and less massive FCMDs, (2) the stalled spin-down and enhanced activity of K-dwarfs and the pile-up of G-dwarfs older than a few Gyr are stellar-structure and MB-dependent, and weakly dependent on core-envelope coupling effects, (3) our expression of the core-envelope convergence time-scale $\tau _{\text{converge}}(M_\ast , P_{\text{spin}})$ between a few 10 to 100 Myr strongly depends on stellar structure but weakly on MB strength and shear, such that fast and massive rotators achieve corotation earlier, (4) our estimates of the surface magnetic fields are in general agreement with observations and our wind mass loss evolution explains the weak winds from the solar analog $\pi ^1$ UMa, and (5) with our model the massive young Sun hypothesis as a solution to the faint young Sun problem can likely be ruled out, because the maximum mass lost by winds from our Sun with our model is about an order of magnitude smaller than required to solve the problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.