Abstract

Abstract For a class of systems obeying Euler's equation of motion the existence of a quantity to be named "proper mechanical energy" (PME) is shown which, together with internal energy, results in a quantity to be named "proper energy" (PE), which is conserved under conditions of time-dependent potentials. The appertaining formal structure for the continuum mechanics of such systems is the counterpart to Gibbs' fundamental equation of thermodynamics and the relations deriving therefrom. Euler's equation of motion, in particular, corresponds to the Gibbs-Duhem equation of thermodynamics. The transport properties of PME and PE are different from those of the corresponding conventional energies. The results point to a general structure of this kind for continuum mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.