Abstract

ABSTRACT The next generation of weak lensing surveys will measure the matter distribution of the local universe with unprecedented precision, allowing the resolution of non-Gaussian features of the convergence field. This encourages the use of higher-order mass-map statistics for cosmological parameter inference. We extend the forward-modelling based methodology introduced in a previous forecast paper to match these new requirements. We provide multiple forecasts for the $w$CDM parameter constraints that can be expected from stage 3 and 4 weak lensing surveys. We consider different survey setups, summary statistics and mass map filters including wavelets. We take into account the shear bias, photometric redshift uncertainties, and intrinsic alignment. The impact of baryons is investigated and the necessary scale cuts are applied. We compare the angular power spectrum analysis to peak and minima counts as well as Minkowski functionals of the mass maps. We find a preference for Starlet over Gaussian filters. Our results suggest that using a survey setup with 10 instead of 5 tomographic redshift bins is beneficial. Adding cross-tomographic information improves the constraints on cosmology and especially on galaxy intrinsic alignment for all statistics. In terms of constraining power, we find the angular power spectrum and the peak counts to be equally matched for stage 4 surveys, followed by minima counts and the Minkowski functionals. Combining different summary statistics significantly improves the constraints and compensates the stringent scale cuts. We identify the most ‘cost-effective’ combination to be the angular power spectrum, peak counts and Minkowski functionals following Starlet filtering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call