Abstract
Cloud computing techniques take the form of distributed computing by utilizing multiple computers to execute computing simultaneously on the service side. To process the increasing quantity of multimedia data, numerous large-scale multimedia data storage computing techniques in the cloud computing have been developed. Of all the techniques, Hadoop plays a key role in the cloud computing. Hadoop, a computing cluster formed by low-priced hardware, can conduct the parallel computing of petabytes of multimedia data. Hadoop features high-reliability, high-efficiency, and high-scalability. The numerous large-scale multimedia data computing techniques include not only the key core techniques, Hadoop and MapReduce, but also the data collection techniques, such as File Transfer Protocol and Flume. In addition, distributed system configuration allocation, automatic installation, and monitoring platform building and management techniques are all included. As a result, only with the integration of all the techniques, a reliable large-scale multimedia data platform can be offered. In this paper, we introduce how cloud computing can make a breakthrough by proposing a multimedia social network dataset on Hadoop platform and implementing a prototype version. Detailed specifications and design issues are discussed as well. An important finding of this article is that we can save more time if we conduct the multimedia social networking analysis using Cloud Hadoop Platform rather than using a single computer. The advantages of cloud computing over the traditional data processing practices are fully demonstrated in this article. The applicable framework designs and the tools available for the large-scale data processing are also proposed. We show the experimental multimedia data including data sizes and processing time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.