Abstract

This article addresses a new dynamic optimization problem (DOP) based on the Predator-Prey (PP) relationship in nature. Indeed, a PP system involves two adversary species where the predator's objective is to hunt the prey while the prey's objective is to escape from its predator. By analogy to dynamic optimization, a DOP can be seen as a predation between potential solution(s) in the search space, which represents the predator, and the moving optimum, as the prey. Therefore we define the dynamic predator-prey problem (DPP) whose objective is to keep track of the moving prey, so as to minimize the distance to the optimum. To solve this problem, a dynamic approach that continuously adapts to the changing environment is required. Accordingly, we propose a new evolutionary approach based on three main techniques for DOPs, namely: multi-population scheme, random immigrants, and memory of past solutions. This hybridization of methods aims at improving the evolutionary approaches ability to deal with DOPs and to restrain as much as possible their drawbacks. Our computational experiments show that the proposed approach achieves high performance for DPP and and competes with state of the art approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call