Abstract

We provide a derivation of holographic entanglement entropy for spherical entangling surfaces. Our construction relies on conformally mapping the boundary CFT to a hyperbolic geometry and observing that the vacuum state is mapped to a thermal state in the latter geometry. Hence the conformal transformation maps the entanglement entropy to the thermodynamic entropy of this thermal state. The AdS/CFT dictionary allows us to calculate this thermodynamic entropy as the horizon entropy of a certain topological black hole. In even dimensions, we also demonstrate that the universal contribution to the entanglement entropy is given by A-type trace anomaly for any CFT, without reference to holography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call