Abstract
This study aimed to develop a classifier for infants at 12 months of age based on a parent-report measure (the First Year Inventory 2.0 [FYI]), for the following reasons: (1) to classify infants at elevated risk, above and beyond that attributable to familial risk status for ASD; and (2) to serve as a starting point to refine an approach for risk estimation in population samples. A total of 54 high-familial risk (HR) infants later diagnosed with ASD (HR-ASD), 183 HR infants not diagnosed with ASD at 24 months of age (HR-Neg), and 72 low-risk controls participated in the study. All infants contributed FYI data at 12 months of age and had a diagnostic assessment for ASD at age 24 months. A data-driven, cross-validated analytic approach was used to develop a classifier to determine screening accuracy (eg, sensitivity) of the FYI to classify HR-ASD and HR-Neg. The newly developed FYI classifier had an estimated sensitivity of 0.71 (95% CI: 0.50, 0.91) and specificity of 0.72 (95% CI: 0.49, 0.91). This classifier demonstrates the potential to improve current screening for ASD risk at 12 months of age in infants already at elevated familial risk for ASD, increasing opportunities for detection of autism risk in infancy. Findings from this study highlight the utility of combining parent-report measures with machine learning approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Academy of Child & Adolescent Psychiatry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.