Abstract

Molecular docking is an important tool for the discovery of new biologically active molecules given that the receptor structure is known. An excellent environment for the development of new methods and improvement of the current methods is being provided by the rapid growth in the number of proteins with known structure. The evaluation of the solvation energies outstands among the challenges for the modeling of the receptor-ligand interactions, especially in the context of molecular docking where a fast, though accurate, evaluation is ought to be achieved. Here we evaluated a variation of the desolvation energy model proposed by Stouten (Stouten P.F.W. et al, Molecular Simulation, 1993, 10: 97–120), or SV model. The SV model showed a linear correlation with experimentally determined solvation energies, as available in the database FreeSolv. However, when used in retrospective docking simulations using the benchmarks DUD, charged-matched DUD and DUD-Enhanced, the SV model resulted in poorer enrichments when compared to a pure force field model with no correction for solvation effects. The data provided here is consistent with other empirical solvation models employed in the context of molecular docking and indicates that a good model to account for solvent effects is still a goal to achieve. On the other hand, despite the inability to improve the enrichment of retrospective simulations, the SV solvation model showed an interesting ability to reduce the number of molecules with net charge -2 and -3 e among the top-scored molecules in a prospective test.

Highlights

  • The increased number of solved protein structures provide a unique opportunity for the application of the so-called ‘structure-based’ methods for the development of new chemical entities able to regulate biological systems [1]

  • We evaluated a variation of the widespread Stouten solvation model in the context of ligand docking

  • Despite the good correlation of the solvation energies computed by the SV model and experimentally determined solvation energies, the SV model resulted in decreased enrichments when used in retrospective docking simulation of gold standard benchmarks such as directory of useful decoys (DUD) and charged-matched DUD (CM-DUD)

Read more

Summary

Introduction

The increased number of solved protein structures provide a unique opportunity for the application of the so-called ‘structure-based’ methods for the development of new chemical entities able to regulate biological systems [1]. We evaluated the model in the context of ligand docking with the software LiBELa [20] and, surprisingly, we found that the introduction of the correction term for solvent effect does not significantly improve the enrichment of binders against decoy molecules.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.