Abstract

Electrocardiogram signals acquired through a steering wheel could be the key to seamless, highly comfortable, and continuous human recognition in driving settings. This paper focuses on the enhancement of the unprecedented lesser quality of such signals, through the combination of Savitzky-Golay and moving average filters, followed by outlier detection and removal based on normalised cross-correlation and clustering, which was able to render ensemble heartbeats of significantly higher quality. Discrete Cosine Transform (DCT) and Haar transform features were extracted and fed to decision methods based on Support Vector Machines (SVM), k-Nearest Neighbours (kNN), Multilayer Perceptrons (MLP), and Gaussian Mixture Models - Universal Background Models (GMM-UBM) classifiers, for both identification and authentication tasks. Additional techniques of user-tuned authentication and past score weighting were also studied. The method’s performance was comparable to some of the best recent state-of-the-art methods (94.9% identification rate (IDR) and 2.66% authentication equal error rate (EER)), despite lesser results with scarce train data (70.9% IDR and 11.8% EER). It was concluded that the method was suitable for biometric recognition with driving electrocardiogram signals, and could, with future developments, be used on a continuous system in seamless and highly noisy settings.

Highlights

  • It was concluded that the method was suitable for biometric recognition with driving electrocardiogram signals, and could, with future developments, be used on a continuous system in seamless and highly noisy settings

  • Biometric recognition is gradually becoming a part of our daily lives, as it replaces common identification and access control systems based on keys, cards, codes, or passwords [1,2]

  • The electrocardiogram (ECG), resulting from the electrical conduction through the heart needed for its contraction, is one of the most recent traits to be explored for biometric purposes [4,5]

Read more

Summary

Introduction

Biometric recognition is gradually becoming a part of our daily lives, as it replaces common identification and access control systems based on keys, cards, codes, or passwords [1,2]. While these can be lost, copied, or stolen, biometric systems are based on intrinsic traits that are always with the person and ensure the correspondence between the subject’s and the credential’s identities [2,3]. Identification rate (IDR) and 2.66% authentication equal error rate (EER)), despite lesser results with scarce train data (70.9% IDR and 11.8% EER). It was concluded that the method was suitable for biometric recognition with driving electrocardiogram signals, and could, with future developments, be used on a continuous system in seamless and highly noisy settings.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.