Abstract

We revisit the construction of discrete kinetic models for single-component isothermal two-phase flows. Starting from a kinetic model for a non-ideal fluid, we show that, under conventional scaling, the Navier–Stokes equations with a non-ideal equation of state are recovered in the hydrodynamic limit. A scaling based on the smallness of velocity increments is then introduced, which recovers the full Navier–Stokes–Korteweg equations. The proposed model is realized on a standard lattice and validated on a variety of benchmarks. Through a detailed study of thermodynamic properties including co-existence densities, surface tension, Tolman length and sound speed, we show thermodynamic consistency, well-posedness and convergence of the proposed model. Furthermore, hydrodynamic consistency is demonstrated by verification of Galilean invariance of the dissipation rate of shear and normal modes and the study of visco-capillary coupling effects. Finally, the model is validated on dynamic test cases in three dimensions with complex geometries and large density ratios such as drop impact on textured surfaces and mercury drops coalescence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.